Search results for "Radiation Transport"
showing 4 items of 4 documents
PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE
2021
Monte Carlo methods provide detailed and accurate results for radiation transport simulations. Unfortunately, the high computational cost of these methods limits its usage in real-time applications. Moreover, existing computer codes do not provide a methodology for adapting these kinds of simulations to specific problems without advanced knowledge of the corresponding code system, and this restricts their applicability. To help solve these current limitations, we present PenRed, a general-purpose, stand-alone, extensible and modular framework code based on PENELOPE for parallel Monte Carlo simulations of electron-photon transport through matter. It has been implemented in C++ programming la…
PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE
2021
Monte Carlo methods provide detailed and accurate results for radiation transport simulations. Unfortunately, the high computational cost of these methods limits its usage in real-time applications. Moreover, existing computer codes do not provide a methodology for adapting these kind of simulations to specific problems without advanced knowledge of the corresponding code system, and this restricts their applicability. To help solve these current limitations, we present PenRed, a general-purpose, stand-alone, extensible and modular framework code based on PENELOPE for parallel Monte Carlo simulations of electron-photon transport through matter. It has been implemented in C++ programming lan…
Estimating Terrestrial Neutron-Induced SEB Cross-Sections and FIT Rates for High-Voltage SiC Power MOSFETs
2019
Cross sections and failure in time rates for neutron-induced single-event burnout (SEB) are estimated for SiC power MOSFETs using a method based on combining results from heavy ion SEB experimental data, 3-D TCAD prediction of sensitive volumes, and Monte Carlo radiation transport simulations of secondary particle production. The results agree well with experimental data and are useful in understanding the mechanisms for neutron-induced SEB data.
Radiative Shocks in Rotating Accretion Flows around Black Holes
2004
It is well known that the rotating inviscid accretion flows with adequate injection parameters around black holes could form shock waves close to the black holes, after the flow passes through the outer sonic point and can be virtually stopped by the centrifugal force. We examine numerically such shock waves in 1D and 2D accretion flows, taking account of cooling and heating of the gas and radiation transport. The numerical results show that the shock location shifts outward compared with that in the adiabatic solutions and that the more rarefied ambient density leads to the more outward shock location. In the 2D-flow, we find an intermediate frequency QPO behavior of the shock location as …